
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Microinjection of the D2 agonist quinpirole into the A10 dopamine region blocks amphetamine-, but not cocaine-stimulated motor activity.

pmid: 1349649
Microinjection of the D2 agonist quinpirole into the A10 dopamine region blocks amphetamine-, but not cocaine-stimulated motor activity.
Dopamine neurons in the ventral mesencephalon are under the inhibitory influence of dopamine D2 and gamma-aminobutyric acidB receptors. In a previous report, we demonstrated that intra-A10 injections of baclofen, a gamma-aminobutyric acidB agonist, could inhibit the motor-stimulant response to cocaine and amphetamine. In order to further extend these results, we examined the effects of injection of the D2 agonist quinpirole into the A10 region on cocaine- and amphetamine-stimulated motor activity. The results of this study showed that intra-A10 quinpirole dose-dependently decreased locomotor activity. In addition, an intra-A10 injection of 0.3 nmol/microliter quinpirole, a dose chosen for its near threshold effect, could block the motor-stimulant response to a low dose of amphetamine (0.5 mg/kg) and attenuate the response to moderate doses (1.0 and 2.0 mg/kg). Cocaine-stimulated motor activity, at all doses tested (7.5, 15.0 and 30.0 mg/kg), was not altered by intra-A10 quinpirole pretreatment. In vivo microdialysis revealed that quinpirole was unable to block the amphetamine-induced increase in extracellular dopamine concentrations within the nucleus accumbens, despite blocking the motor-stimulant response. It is suggested that the different mechanisms of action of cocaine and amphetamine, uptake blocker vs. releaser or longloop vs. shortloop feedback inhibition of A10 dopamine neurons, respectively, may account for the differential effects that quinpirole had in blocking the motor-stimulant response to these psychostimulants.
- Washington State University United States
Male, Quinpirole, Microinjections, Dopamine, Dopamine Agents, Brain, Rats, Inbred Strains, Motor Activity, Rats, Amphetamine, Cocaine, Animals, Ergolines
Male, Quinpirole, Microinjections, Dopamine, Dopamine Agents, Brain, Rats, Inbred Strains, Motor Activity, Rats, Amphetamine, Cocaine, Animals, Ergolines
9 Research products, page 1 of 1
- 1984IsAmongTopNSimilarDocuments
- 2002IsAmongTopNSimilarDocuments
- 2017IsAmongTopNSimilarDocuments
- 1972IsAmongTopNSimilarDocuments
- 1967IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).29 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
