Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energy & Fuelsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energy & Fuels
Article
License: CC BY NC ND
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
RUIdeRA
Article . 2016
Data sources: RUIdeRA
Energy & Fuels
Article . 2008 . Peer-reviewed
Data sources: Crossref
versions View all 8 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Performance of a Vapor-Fed Polybenzimidazole (PBI)-Based Direct Methanol Fuel Cell

Authors: Lobato Bajo, Justo; Cañizares Cañizares, Pablo; Rodrigo Rodrigo, Manuel Andrés; Linares León, José Joaquín; López-Vizcaíno López, Rubén;

Performance of a Vapor-Fed Polybenzimidazole (PBI)-Based Direct Methanol Fuel Cell

Abstract

A high-temperature vapor-fed direct methanol fuel cell (DMFC) has been implemented using H3PO4-doped polybenzimidazole (PBI) as the electrolyte. The influence of the cell temperature, the methanol concentration, and the oxygen partial pressure has been studied. This investigation included the evaluation of the cell performance, each electrode potential, and crossover current. A lifetime test for 10 days was intermittently carried out to assess the stability of the cell response. Increases in the temperature notably enhanced the performance of the cell, although the methanol crossover also increased. The methanol concentration was found to have an optimum value, because a low amount of methanol led to mass-transfer limitations and a large amount promoted the crossover and limited the availability of water for methanol oxidation. An increase in the oxygen partial pressure markedly improved the cell response. The higher comburent availability and reduced methanol crossover effect explain this behavior. The study of the combined effect of the oxygen partial pressure and methanol concentration confirmed this effect. The preliminary durability results showed quite stable performance for the cell at a constant current density of 100 mA cm−2. Finally, a comparison between PBI and the traditional DMFC membrane (Nafion) was carried out. This comparison showed the PBI-based cell to be a good candidate for DMFC.

Country
Spain
Keywords

Direct Methanol Fuel Cell

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    74
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
74
Top 10%
Top 10%
Top 10%
hybrid
Related to Research communities