Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 2023
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Using Mg II Doublet to Predict the Lyman Continuum Escape Fraction from 14 HETDEX Galaxies

Authors: Salazar, Victoria; Leclercq, Floriane; Chisholm, John; Hill, Gary J.; Zeimann, Gregory R.;

Using Mg II Doublet to Predict the Lyman Continuum Escape Fraction from 14 HETDEX Galaxies

Abstract

Indirect diagnostics of Lyman continuum (LyC) escape are needed to constrain which sources reionized the universe. We used Mg II to predict the LyC escape fraction (fesc(LyC)) in 14 galaxies selected from the Hobby-Eberly Telescope Dark Energy Experiment solely based upon their Mg II properties. Using the Low Resolution Spectrograph on HET, we identified 7 and 5 possible LyC leakers depending on the method, with fesc(LyC) ranging from 3 to 80%. Interestingly, our targets display diverse [O III]/[O II] ratios (O32), with strong inferred LyC candidates showing lower O32 values than previous confirmed LyC leaker samples. Additionally, a correlation between dust and fesc(LyC) was identified. Upcoming Hubble Space Telescope/Cosmic Origins Spectrograph LyC observations of our sample will test if Mg II and dust are predictors of fesc(LyC), providing insights for future JWST studies of high-redshift galaxies.

4 pages, 1 figure. Accepted to RNAAS

Related Organizations
Keywords

Astrophysics of Galaxies (astro-ph.GA), FOS: Physical sciences, Astrophysics - Astrophysics of Galaxies

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green