Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Water Science & Tech...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Water Science & Technology
Article . 2001 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Biodegradation of 1,1,1,2-tetrachloroethane under methanogenic conditions

Authors: E. N. Culubret; Ricardo Amils; M. Luz; José Luis Sanz;

Biodegradation of 1,1,1,2-tetrachloroethane under methanogenic conditions

Abstract

Chlorinated aliphatic hydrocarbons are widely used as solvents and as intermediates in chemical synthesis, so they can be found in industrial wastewaters and released to the environment where they became a serious health risk due to their toxic properties and high chemical stability. Most of these compounds are xenobiotic and recalcitrant to biodegradation. In this article we report the effect of different co-substrates in the 1,1,1,2-tetrachloroethane (1,1,1,2-TeCA) degradation by anaerobic granular sludge, and its degradative pathway. Our results show that this compound is easy and rapidly biodegradable under methanogenic conditions, even in the absence of external electron donors. 1,1,1,2-TeCA is equimolecularly degraded to 1,1-dichloroethene (1,1-DCE) by reductive dichloroelimination. 1,1-DCE is only completely biodegraded in the presence of lactic acid as co-substrate. Although 1,1,1,2-TeCA can be apparently removed by autoclaved granular sludge, the compound is not transformed but retained inside the granules. The primary biodegradation of 1,1,1,2-TeCE to 1,1-DCE is a biotic process mediated by anaerobic bacteria.

Related Organizations
Keywords

Ethane, Industrial Waste, Euryarchaeota, Waste Disposal, Fluid, Water Purification, Bacteria, Anaerobic, Biodegradation, Environmental, Hydrocarbons, Chlorinated, Solvents

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Average
Average
Average
gold