Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Fuel Cellsarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Fuel Cells
Article . 2010 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Development of a Direct Alcohol Alkaline Fuel Cell Stack

Authors: D. Gaurava; Anil Kumar Verma; Dharmendar Kumar Sharma; Suddhasatwa Basu;

Development of a Direct Alcohol Alkaline Fuel Cell Stack

Abstract

AbstractDirect alcohol alkaline fuel cells (DAAFC) are one of the potential fuel cell types in the category of low temperature fuel cells, which could become an energy source for portable electronic equipment in future. In the present study, a simple DAAFC stack has been developed and studied to evaluate the maximum performance for a given fuel (methanol or ethanol) and electrolyte (KOH) at various concentrations and temperatures. The open circuit voltage of the stack of four cells was nearly 4.0 V. A particular combination, 2 M fuel (methanol or ethanol) and 3 M KOH, results in maximum power density of the stack. The maximum power density obtained from the DAAFC stack (25 °C) was 50 mW cm–2 at 20 mA cm–2 for methanol and 17 mA cm–2 for ethanol. The stack power density corroborated with that obtained from a single cell, indicating there was no further loss in the stack.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    17
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
17
Top 10%
Average
Average