
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Edge recombination analysis of silicon solar cells using photoluminescence measurements

Edge recombination analysis of silicon solar cells using photoluminescence measurements
Edge losses in silicon solar cells are becoming more important in current photovoltaic research, especially in shingled cell modules with high perimeter to area ratios. Hence, in this study a new approach is presented to quantify edge recombination losses by using photoluminescence (PL) measurements combined with device modelling. The main focus of this work is to determine and separate the contribution of the two relevant edge recombination losses: (i) recombination at the bulk edge, described by an effective surface recombination velocity Seff,edge, and (ii) recombination at the pn-junction edge, described by an edge-length specific non-ideal recombination parameter J02,edge. For this purpose, the PL gradient towards the edge at different illumination intensities is fitted by Quokka3 simulations. The developed method is applied for differently separated unpassivated edges, namely by thermal laser separation (TLS) and by mechanical cleaving. Additionally, an emitter window for the TLS edge is introduced where no pn-junction at the edge is present. It was found that the emitter window results in less edge recombination while having the same bulk-edge recombination properties as without. As a result, J02,edge = 3 nA/cm and Seff,edge = 105 cm/s are determined for the TLS edge without emitter window while the mechanically cleaved edge showed higher edge recombination.
- Fraunhofer Society Germany
- University of Freiburg Germany
- Fraunhofer Institute for Solar Energy Systems Germany
1 Research products, page 1 of 1
- 2018IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).10 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
