Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://aip.scitatio...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://aip.scitation.org/doi/...
Conference object
Data sources: UnpayWall
https://doi.org/10.1063/1.5123...
Conference object . 2019 . Peer-reviewed
Data sources: Crossref
https://dx.doi.org/10.24406/pu...
Other literature type . 2019
Data sources: Datacite
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Edge recombination analysis of silicon solar cells using photoluminescence measurements

Authors: Florian Schindler; Hannah Stolzenburg; Wolfram Kwapil; Puzant Baliozian; Armin Richter; Andreas Fell; Martin C. Schubert;

Edge recombination analysis of silicon solar cells using photoluminescence measurements

Abstract

Edge losses in silicon solar cells are becoming more important in current photovoltaic research, especially in shingled cell modules with high perimeter to area ratios. Hence, in this study a new approach is presented to quantify edge recombination losses by using photoluminescence (PL) measurements combined with device modelling. The main focus of this work is to determine and separate the contribution of the two relevant edge recombination losses: (i) recombination at the bulk edge, described by an effective surface recombination velocity Seff,edge, and (ii) recombination at the pn-junction edge, described by an edge-length specific non-ideal recombination parameter J02,edge. For this purpose, the PL gradient towards the edge at different illumination intensities is fitted by Quokka3 simulations. The developed method is applied for differently separated unpassivated edges, namely by thermal laser separation (TLS) and by mechanical cleaving. Additionally, an emitter window for the TLS edge is introduced where no pn-junction at the edge is present. It was found that the emitter window results in less edge recombination while having the same bulk-edge recombination properties as without. As a result, J02,edge = 3 nA/cm and Seff,edge = 105 cm/s are determined for the TLS edge without emitter window while the mechanically cleaved edge showed higher edge recombination.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    10
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
10
Top 10%
Top 10%
Average
bronze