
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
An Experimental Investigation of Tuning QUIC-Based Publish–Subscribe Architectures in IoT

An Experimental Investigation of Tuning QUIC-Based Publish–Subscribe Architectures in IoT
There has been growing interest in using the QUIC transport protocol for the Internet of Things (IoT). In lossy and high latency networks, QUIC outperforms TCP and TLS. Since IoT greatly differs from traditional networks in terms of architecture and resources, IoT specific parameter tuning has proven to be of significance. While RFC 9006 offers a guideline for tuning TCP within IoT, we have not found an equivalent for QUIC. This paper is the first of our knowledge to contribute empirically based insights towards tuning QUIC for IoT. We improved our pure HTTP/3 publish-subscribe architecture and rigorously benchmarked it against an alternative: MQTT-over-QUIC. To investigate the impact of transport-layer parameters, we ran both applications on Raspberry Pi Zero hardware. Eight metrics were collected while emulating different network conditions and message payloads. We enumerate the points we experimentally identified (notably, relating to authentication, MAX\_STREAM messages, and timers) and elaborate on how they can be tuned to improve resource consumption and performance. Our application offered lower latency than MQTT-over-QUIC with slightly higher resource consumption, making it preferable for reliable time-sensitive dissemination of information.
- University of Ottawa Canada
Computer Science - Networking and Internet Architecture, Networking and Internet Architecture (cs.NI), FOS: Computer and information sciences
Computer Science - Networking and Internet Architecture, Networking and Internet Architecture (cs.NI), FOS: Computer and information sciences
2 Research products, page 1 of 1
- IsRelatedTo
- IsRelatedTo
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).2 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
