Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Renewable Energy
Article . 2016 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Steady-state investigation of water vapor adsorption for thermally driven adsorption based greenhouse air-conditioning system

Authors: Muhammad Sultan; Muhammad Sultan; Takahiko Miyazaki; Takahiko Miyazaki; Shigeru Koyama; Shigeru Koyama; Bidyut Baran Saha; +1 Authors

Steady-state investigation of water vapor adsorption for thermally driven adsorption based greenhouse air-conditioning system

Abstract

Abstract In the present study, water vapor adsorption onto silica-gel, activated carbon powder (ACP) and activated carbon fiber (ACF) has been experimentally measured at 20, 30 and 50 °C using a volumetric method based adsorption measurement apparatus for greenhouse air-conditioning (AC). The Guggenheim–Anderson–De Boer and Dubinin–Astakhov adsorption models are used to fit the adsorption data of silica-gel and ACP/ACF, respectively. The isosteric heat of adsorption is determined by Clausius–Clapeyron relationship. The adsorbents are evaluated for low-temperature regeneration with aim to develop solar operated AC system for greenhouses. Ideal growth zone for agricultural products is determined by which the steady-state desiccant AC cycle is evaluated on the psychometric chart and adsorption isobars. Steady-state moisture cycled (MC SS ) by each adsorbent is determined for demand category-I, II and III which are based on 60%, 40% and 20% relative humidity of dehumidified air, respectively. In case of demand category-I, the ACP enables maximum MC SS at all regeneration temperatures (T reg ), ideally sitting at 47 °C. The ACF enables double MC SS as compared to silica-gel during demand category-II at T reg ≥59 °C. However, the silica-gel is found the only applicable adsorbent for the demand category-III.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    65
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
65
Top 1%
Top 10%
Top 10%