
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Steady-state investigation of water vapor adsorption for thermally driven adsorption based greenhouse air-conditioning system

Steady-state investigation of water vapor adsorption for thermally driven adsorption based greenhouse air-conditioning system
Abstract In the present study, water vapor adsorption onto silica-gel, activated carbon powder (ACP) and activated carbon fiber (ACF) has been experimentally measured at 20, 30 and 50 °C using a volumetric method based adsorption measurement apparatus for greenhouse air-conditioning (AC). The Guggenheim–Anderson–De Boer and Dubinin–Astakhov adsorption models are used to fit the adsorption data of silica-gel and ACP/ACF, respectively. The isosteric heat of adsorption is determined by Clausius–Clapeyron relationship. The adsorbents are evaluated for low-temperature regeneration with aim to develop solar operated AC system for greenhouses. Ideal growth zone for agricultural products is determined by which the steady-state desiccant AC cycle is evaluated on the psychometric chart and adsorption isobars. Steady-state moisture cycled (MC SS ) by each adsorbent is determined for demand category-I, II and III which are based on 60%, 40% and 20% relative humidity of dehumidified air, respectively. In case of demand category-I, the ACP enables maximum MC SS at all regeneration temperatures (T reg ), ideally sitting at 47 °C. The ACF enables double MC SS as compared to silica-gel during demand category-II at T reg ≥59 °C. However, the silica-gel is found the only applicable adsorbent for the demand category-III.
- Kyushu University Japan
- Kyushu University Japan
- International Institute of Minnesota United States
- International Institute of Minnesota United States
21 Research products, page 1 of 3
- 2014IsAmongTopNSimilarDocuments
- 2007IsAmongTopNSimilarDocuments
- 2005IsAmongTopNSimilarDocuments
- 2016IsAmongTopNSimilarDocuments
- 2015IsAmongTopNSimilarDocuments
- 2018IsAmongTopNSimilarDocuments
- 2020IsAmongTopNSimilarDocuments
chevron_left - 1
- 2
- 3
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).65 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
