Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Bioresource Technolo...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Bioresource Technology
Article . 2011 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Pretreatment of corn stover using low-moisture anhydrous ammonia (LMAA) process

Authors: Kevin B. Hicks; Chang Geun Yoo; Tae Hyun Kim; Nhuan P. Nghiem;

Pretreatment of corn stover using low-moisture anhydrous ammonia (LMAA) process

Abstract

A simple pretreatment method using anhydrous ammonia was developed to minimize water and ammonia inputs for cellulosic ethanol production, termed the low moisture anhydrous ammonia (LMAA) pretreatment. In this method, corn stover with 30-70% moisture was contacted with anhydrous ammonia in a reactor under nearly ambient conditions. After the ammoniation step, biomass was subjected to a simple pretreatment step at moderate temperatures (40-120°C) for 48-144 h. Pretreated biomass was saccharified and fermented without an additional washing step. With 3% glucan loading of LMAA-treated corn stover under best treatment conditions (0.1g-ammonia+1.0 g-water per g biomass, 80°C, and 84 h), simultaneous saccharification and cofermentation test resulted in 24.9 g/l (89% of theoretical ethanol yield based on glucan+xylan in corn stover).

Keywords

Waste Products, Analysis of Variance, Endo-1,4-beta Xylanases, Time Factors, Ethanol, Temperature, Water, Zea mays, Ammonia, Fermentation, Biotechnology

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    88
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
88
Top 10%
Top 10%
Top 10%