
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Copper (hydr)oxide modified copper electrode for electrocatalytic oxidation of hydrazine in alkaline media

Copper (hydr)oxide modified copper electrode for electrocatalytic oxidation of hydrazine in alkaline media
Abstract Stable copper (hydr)oxide modified copper electrode was prepared by cyclic voltammetry in 0.1 M NaOH solution in the potential range of −300 to 800 mV. In the first cycle the oxidation peaks of copper were observed but in the second and next cycles, they were omitted and a clean background was obtained. This indicates that an irreversible electrochemical transformation has been achieved during the first cycle and a stable layer of hydr(oxide) formed on the surface of the copper electrode. This layer protects the electrode from corrosion. This electrode can be used for electrochemical studies in the potential range of −300 to 800 mV without any interfering effects by the oxidation peaks of copper. The modified electrode was used for electrocatalytic oxidation of hydrazine. Results showed that on the bare copper electrode the oxidation peak of 10 mM hydrazine appear at 380 mV while on the copper (hydr)oxide modified copper electrode, it appear at 260 mV. About 120 mV negative shift of the peak potential indicated the catalytic activity of (hydr)oxide layer for hydrazine. The kinetic parameters were investigated by using cyclic voltammetry and chronoamperometry.
- Payame Noor University Iran (Islamic Republic of)
- Payame Noor University Iran (Islamic Republic of)
5 Research products, page 1 of 1
- 2020IsAmongTopNSimilarDocuments
- 2016IsAmongTopNSimilarDocuments
- 2016IsAmongTopNSimilarDocuments
- 2010IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).75 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
