Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Colloid a...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Colloid and Interface Science
Article . 2019 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Intermediate phase-assisted solution preparation of two dimensional CsPbCl3 perovskite for efficient ultraviolet photodetection

Authors: Zeyao Han; Han Hu; Yousheng Zou; Yuhang Dong; Bo Huang;

Intermediate phase-assisted solution preparation of two dimensional CsPbCl3 perovskite for efficient ultraviolet photodetection

Abstract

Fully-inorganic halide perovskites (HPs) have realized respectable progress in multiple optoelectronic applications. However, Cl-based fully-inorganic HPs that are ideal for ultraviolet (UV) photodetection applications in high demand still remain rarely explored mainly due to the poor solution processability compared with other counterparts. Here we propose a facile solution method to fabricate CsPbCl3 with not only high crystallinity but also a two dimensional (2D) morphology for efficient UV photodetection. 2D Ruddlesden-Popper perovskites (RPPs) are firstly prepared as the intermediate phase, which habitually grow into microplates owing to an intrinsic 2D structure. Then Cs+ was introduced in the form of highly soluble cesium acetate to exchange with the organic cations in the RPPs to produce 2D CsPbCl3 with preserved morphology and micron scale size. By this chemical route, the poor solubility issue can be addressed. All the procedures are conducted at room temperature in open air. The perfect band gap, high crystallinity and 2D morphology promise superior UV light sensing capability, one of the best overall performances featuring high responsivity, fast response speed, low driving voltages and good stability is obtained. This work is believed to fill in the "Cl-gap" for this promising class of material.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    23
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
23
Top 10%
Average
Top 10%