
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Quality of bio-solids produced in a Spanish Wastewater Treatment Plant (Córdoba-Spain) and its use in agronomy along 2000-2019

Quality of bio-solids produced in a Spanish Wastewater Treatment Plant (Córdoba-Spain) and its use in agronomy along 2000-2019
Bio-solids are the final fate of pollution present in urban wastewater, reaching the production of these ones in Spanish WWTPs 701,751 T/year (dates of 2018). Considering that 85% of Spanish bio-solids are used in agronomy, it is important to know characteristics of biosolids there produced, and in this way, we have investigated bio-solids generated in La Golondrina´s WWTP (Córdoba, Spain) along 2000-2019. This WWTP is a conventional facility operated by activated sludges (26.55x106 m3/year treated) which has produced 1.43 kg of bio-solids per m3 of treated wastewater (38.000 T/year). Our results indicated that bio-solids had a dryness over initial mass of 22.3%, and 74.9% of organic matter over dried matter (o.d.m.). At the same time, major components detected in bio-solids were N, P and Ca which levels were 5.0%, 3.5% and 3.7%, respectively. On the other hand, concentration of total metals in bio-solids ranged 13,024 mg/kg o.d.m., being the main metal Fe (11.749 mg/kg o.d.m.) followed by Zn, Cu and Mn, with levels as mg/kg o.d.m. of 463.1, 392.8 and 265.7, respectively. Evolution per year of all the investigated parameters are shown in the paper. Taking into account the use of bio-solids in agronomy, we have evaluated levels of metals limited by the Spanish normative to this respect: thus, the seven metals restricted (Cd, Cu, Ni, Pb, Zn, Hg and Cr) exhibited concentration in bio-solids very lower than parametric values established. Moreover, we have estimated the ratios of accumulation of organics and metals from wastewater to bio-solids: thus, organic matter, N and P, were accumulated in bio-solids respectively, 342, 356 and 643 times, and total metals, 2,632 times. Finally, levels of Escherichia coli slightly varied from wastewater to bio-solids: 1.5x108 colony-forming units/L in the first one, and 0.9x108/g (o.d.m.) in the second ones.
- University of Córdoba Spain
3 Research products, page 1 of 1
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).0 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
