Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Investigation of the Onset of Gas Entrainment in Dual Discharging Oriented Branches on a Curved Wall With Stratified Flow Using Stereo PIV

Authors: Wael Saleh; Lyes Kadem; Ibrahim Hassan; Robert C. Bowden;

Investigation of the Onset of Gas Entrainment in Dual Discharging Oriented Branches on a Curved Wall With Stratified Flow Using Stereo PIV

Abstract

The discharge of two-phase flow from a stratified region through single or multiple branches is an important process in many industrial applications including the pumping of fluid from storage tanks, shell-and-tube heat exchangers, and the fluid flow through header to the cooling channels, feeder’s tube, of nuclear reactors during loss-of-coolant accidents (LOCA). Knowledge of the flow phenomena involved along with the quality and mass flow rate of the discharging stream(s) is necessary to adequately predict the different phenomena associated with the process. Stereoscopic Particle Image Velocimetry (3D-PIV) was used to provide detailed measurements of the flow patterns involving distributions of mean velocity, vorticity field, and flow structure. The experimental investigation was carried out to simulate two phase discharge from a stratified region through branches located on a quarter-circular wall configuration exposed to a stratified gas-liquid environment. The quarter-circular test section is in close dimensional resemblance with that of a CANDU header-feeder system, with branches mounted at orientation angles of zero, 45° and 90° degrees from the horizontal. The experimental data for the phase development (mean velocity, flow structure, etc..) was done during dual discharge through the horizontal branch and the 45° or 90° branch from an air/water stratified region over a two selected Froude numbers in the horizontal branch while maintaining the Froude number in the other branch constant. These measurements were used to describe the effect of outlet flow conditions on phase redistribution in headers and understand the entrainment phenomena.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Related to Research communities