Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Catalysis Lettersarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Catalysis Letters
Article . 2007 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Low Temperature Water–Gas Shift: Alkali Doping to Facilitate Formate C–H Bond Cleaving over Pt/Ceria Catalysts—An Optimization Problem

Authors: Gerald A. Thomas; Javier Ruiz-Martínez; Harold N. Evin; Burtron H. Davis; Gary Jacobs;

Low Temperature Water–Gas Shift: Alkali Doping to Facilitate Formate C–H Bond Cleaving over Pt/Ceria Catalysts—An Optimization Problem

Abstract

Doping Pt/ceria catalysts with alkali metals was found to lead to an important weakening of the formate C–H bond, as demonstrated by a shift to lower wavenumbers of the ν(CH) vibrational mode. However, with high alkalinity (∼2.5%Na or equimolar amounts of K, Rb, or Cs), a tradeoff was observed such that while the formate became more reactive, the stability of the carbonate species, which arises from the formate decomposition, was found to increase. This was observed by TPD-MS measurements of the adsorbed CO2 probe molecule. Increasing the amount of alkali to levels that were too high also led to lower catalyst BET surface area, the blocking of the Pt surface sites as observed in infrared measurements, and also a shift to higher temperature of the surface shell reduction step of ceria during TPR. When the alkalinity was too high, the CO conversion rate during water–gas shift decreased in comparison with the undoped Pt/ceria catalyst. However, at lower levels of alkali, the abovementioned inhibiting factors on the water–gas shift rate were alleviated such that the weakening of the formate C–H bond could be utilized to improve the overall turnover efficiency during the water–gas shift cycle. This was demonstrated at 0.5%Na (or equimolar equivalent levels of K) doping levels. Not only was the formate turnover rate found to increase significantly during both transient and steady state DRIFTS tests, but this effect was accompanied by a notable increase in the CO conversion rate during low temperature water–gas shift.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    57
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
57
Top 10%
Top 10%
Top 10%