
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Numerical assessment on the hydrothermal behavior and irreversibility of MgO-Ag/water hybrid nanofluid flow through a sinusoidal hairpin heat-exchanger

Numerical assessment on the hydrothermal behavior and irreversibility of MgO-Ag/water hybrid nanofluid flow through a sinusoidal hairpin heat-exchanger
Abstract The aim of this work is to study the hydrothermal and irreversibility characteristics in forced convection flow of Ag-MgO/water hybrid nanofluid through a sinusoidal hairpin heat-exchanger, numerically. The impact of nano-additive concentration (φ), Reynolds number (Re) and amplitude of the sinusoidal tube are investigated on the heat-exchanger performance form both the first law and second law points of view. The considered performance matrices are heat transfer rate, total heat transfer coefficient, heat-exchanger effectiveness, pressure loss, pumping power as well as the irreversibilities due to flow friction and heat transfer. The findings indicated that boosting the Re and φ causes an enhancement in the heat transfer, while the reverse is true about the remaining performance aspects. In addition, it was found that the irreversibility due to flow friction intensifies by boosting either Re or φ. Moreover, the outcomes revealed that the heat transfer is the main source of irreversibility in the flow of hybrid nanofluid (NF) inside a sinusoidal hairpin heat-exchanger. Furthermore, it was reported boosting the amplitude results in a decrease in the performance index of the heat-exchanger.
- Minjiang University China (People's Republic of)
- College of Technological Studies Kuwait
- University of Wollongong Australia
- An Giang University Viet Nam
- An Giang University Viet Nam
Engineering, Science and Technology Studies, 532
Engineering, Science and Technology Studies, 532
2 Research products, page 1 of 1
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).57 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
