
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Control of Submodule Integrated Converters in the Isolated-Port Differential Power-Processing Photovoltaic Architecture

Control of Submodule Integrated Converters in the Isolated-Port Differential Power-Processing Photovoltaic Architecture
Recently, a variety of differential power-processing (DPP) architectures have been shown to improve the efficiency of photovoltaic (PV) systems. This paper proposes a simple control strategy for the isolated-port DPP architecture, and provides a comprehensive stability analysis for this system. The proposed controller drives the duty-cycle of the differential submodule integrated converters (subMICs) in proportion to a voltage difference between the submodule and the isolated-port. This method requires no additional sensing, complex processing, or communication between subMICs, and is therefore well suited for low-cost integrated hardware solutions. Stability of the resulting high-order nonlinear system is analyzed both in the time and frequency domains. A decoupled model is developed that reduces the high-order system dynamics to a 1-D control loop, which allows stable, well-behaved responses using a proportional or a lag compensator. Experimental results for a 72-cell PV module with three subMICs verify static and dynamic operation, and show that overall PV module efficiency exceeds 99% with no shading, and is higher than 96% under significant (50%) shading.
- Universitat Rovira i Virgili Spain
- University of Colorado Boulder United States
5 Research products, page 1 of 1
- 2013IsAmongTopNSimilarDocuments
- 2017IsAmongTopNSimilarDocuments
- 2016IsAmongTopNSimilarDocuments
- 2015IsAmongTopNSimilarDocuments
- 2013IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).78 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
