Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Crystalsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Crystals
Article . 2021 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Crystals
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Crystals
Article . 2021
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Comparative Study of Cold Sintering Process and Autoclave Thermo-Vapor Treatment on a ZnO Sample

Authors: Yurii Ivakin; Andrey Smirnov; Anastasia Kholodkova; Alexander Vasin; Mikhail Kormilicin; Maxim Kornyushin; Vladimir Stolyarov;

Comparative Study of Cold Sintering Process and Autoclave Thermo-Vapor Treatment on a ZnO Sample

Abstract

Analysis of scanning electron microscopy images was used to study the changes in the crystal size distribution of ZnO, which occurred during its processing in an aqueous medium at 220–255 °C and an equilibrium vapor pressure in an autoclave. The results were compared with those of ZnO placed in a die for treatment under similar conditions supplemented with mechanical pressure application in the cold sintering process. In both cases, ZnO was treated in the presence of an activating additive: either zinc acetate or ammonium chloride. During autoclaving, a powder consisting of fine ZnO monocrystals was obtained, while the cold sintering process led to ceramics formation. Under vapor pressure and mechanical pressure, the aqueous medium affected ZnO transformation by the same mechanism of solid-phase mobility activation due to the additives’ influence. The higher the content of additives in the medium, and the higher the mechanical pressure, the more pronounced activating effect was observed. Mass transfer during the cold sintering process occurred mainly by the coalescence of crystals, while without mechanical pressure, the predominance of surface spreading was revealed. In the initial ZnO powder, the average crystal size was 0.193 μm. It grew up to 0.316–0.386 μm in a fine-crystalline powder formed in the autoclave and to an average grain size of 0.244–0.799 μm in the ceramics, which relative density reached 0.82–0.96. A scheme explaining the influence of an aqueous medium on the solid-phase mobility of ZnO structure was proposed. It was found that the addition of 7.6 mol% ammonium chloride to the reaction medium causes the processes of compaction and grain growth similar to those observed in ZnO Cold Sintering Process with the addition of 0.925 mol% zinc acetate.

Related Organizations
Keywords

Crystallography, thermo-vapor treatment, zinc oxide, cold sintering process, solid-phase mobility in a water medium, crystal size distribution, QD901-999, oxide ceramics

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    11
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
11
Top 10%
Average
Top 10%
gold