
Found an issue? Give us feedback
Please grant OpenAIRE to access and update your ORCID works.
This Research product is the result of merged Research products in OpenAIRE.
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
This Research product is the result of merged Research products in OpenAIRE.
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
All Research products
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
For further information contact us at helpdesk@openaire.eu
Formation of NO precursors during the pyrolysis of coal and biomass. Part VII. Pyrolysis and gasification of cane trash with steam

Authors: Lachlan James McKenzie; Fu Jun Tian; Chun-Zhu Li; Jun Ichiro Hayashi; Jianglong Yu; Tadatoshi Chiba;
Formation of NO precursors during the pyrolysis of coal and biomass. Part VII. Pyrolysis and gasification of cane trash with steam
Abstract
Biomass-nitrogen conversion during the pyrolysis and gasification of a cane trash in steam was investigated using a fluidised-bed/fixed-bed reactor and a fluidised-bed/tubular reactor. Our results indicate that the thermal cracking of volatile-N is the main route of HCN formation although the thermal cracking of char-N also contributes to the formation of HCN. There are three major routes of NH3 formation: ‘hydrolysis’ of N-containing structures in the solid phase during the primary pyrolysis, thermal cracking and gasification of solid nascent char as well as the thermal cracking and reforming of volatile-N. Under the current experimental conditions, the hydrolysis of HCN does not appear to be an important route of NH3/HNCO formation.
Related Organizations
- Monash University Australia
- Hokkaido Bunkyo University Japan
- Hokkaido Bunkyo University Japan
11 Research products, page 1 of 2
- 1995IsAmongTopNSimilarDocuments
- 2011IsAmongTopNSimilarDocuments
- 2020IsAmongTopNSimilarDocuments
- 2012IsAmongTopNSimilarDocuments
- 2010IsAmongTopNSimilarDocuments
- 2019IsAmongTopNSimilarDocuments
- 1996IsAmongTopNSimilarDocuments
- 2012IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).52 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%

Found an issue? Give us feedback
citations
Citations provided by BIP!
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
popularity
Popularity provided by BIP!
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
52
Top 10%
Top 10%
Top 10%
bronze
Beta