Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Mycorrhizaarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Mycorrhiza
Article . 2003 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
Mycorrhiza
Article . 2005
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Glomalin content of forest soils in relation to fire frequency and landscape position

Authors: Melissa A. Knorr; Melissa A. Knorr; Ralph E. J. Boerner; Matthias C. Rillig;

Glomalin content of forest soils in relation to fire frequency and landscape position

Abstract

Low-intensity, dormant season fires were frequent and widespread in oak-hickory ( Quercus-Carya) forests of eastern North America until widespread fire suppression began in the mid-1900s. To assess how reintroduction of fire into such ecosystems might affect the activity of arbuscular mycorrhizal (AM) fungi and, thereby, predict the long-term responses of plants and soils to fire, we analyzed the content of the immunoreactive fractions of the AM-fungus-specific glycoprotein glomalin in soils taken in 1994 and 2000 from three forested watersheds in southern Ohio, USA. One watershed remained unburned, one was burned annually from 1996-1999 and one was burned twice, in 1996 and 1999. In addition, to account for the strong landscape-scale gradients of microclimate and soil that typify these watersheds, we stratified each watershed-scale treatment area into three microclimatic zones (=landscape positions) using a GIS-based integrated moisture index (IMI). In the unburned control, the concentrations of immunoreactive, easily-extractable glomalin (IREEG) and immunoreactive total glomalin (IRTG) did not change significantly over the 6-year interval between sampling times, either overall or within any of the three IMI classes. IRTG content was greatest in the mesic landscape positions and lowest in the relatively xeric landscape positions, but IREEG did not vary among landscape positions. Neither IREEG nor IRTG contents were affected by fire, nor were there significant interactions between fire and landscape position in glomalin content. Both correlation and regression analyses demonstrated significant linkages between soil glomalin content, the density/diversity of herbaceous plants, and soil N availability. Despite significant effects of fires on soil N availability and root growth, we resolved no effect of fire on AM fungal activity at this spatial scale.

Related Organizations
Keywords

Ecology, Fires, Trees, Fungal Proteins, Quercus, Mycorrhizae, Soil Microbiology, Carya, Ohio

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    21
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
21
Top 10%
Average
Top 10%
bronze