Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Transactions of the ...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Transactions of the Canadian Society for Mechanical Engineering
Article . 2009 . Peer-reviewed
License: CSP TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

MODELING AND OPTIMIZATION OF AN AMMONIA-WATER COMPRESSION-RESORPTION HEAT PUMPS WITH WET COMPRESSION

Authors: Calin Zamfirescu;

MODELING AND OPTIMIZATION OF AN AMMONIA-WATER COMPRESSION-RESORPTION HEAT PUMPS WITH WET COMPRESSION

Abstract

Wet ammonia-water compression-resorption heat pumps constitute an attractive alternative to the commonly known heat pumps based on Osenbrück cycle because they eliminate the necessity of oil-liquid refrigerant separation. In this respect, a special designed oil-free compressor operating under wet (two-phase) conditions equips the heat pump. The compressor is lubricated by the liquid refrigerant which is carried-out while compressing the vapor. The thermodynamic cycle is located completely inside the two-phase region. In this paper are demonstrated two procedures to optimize the design for COP maximization. It is shown that there is: (i) an optimal choice of the vapor quality at suction, and (ii) an optimal distribution of heat transfer surface between the resorber and the desorber (the total amount of heat transfer surface, being an expression of investment cost, is fixed). The circulating concentration of ammonia has to be chosen such that the minimum pressure in the system is over one bar (to avoid air penetration from the atmosphere) and the maximum pressure is bounded by a technical-economical maximal limit. A general procedure for calculation of the optimal cycle parameters is presented and exemplified for a case with practical relevance. The paper presents only the trends and rough quantitative estimations because the analyzed case is restricted to the ideal isentropic compression. Further research is needed to quantify in detail the effect of compression irreversibility.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Average
Average
Average