Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Molecular Modelling of Ground- and Excited-States Vibrations in Organic Conducting Devices: Hexakis(n-hexyloxy)triphenylene (HAT6) as Case Study

Authors: Zbiri, M; Johnson, MR; Haverkate, LA; Mulder, FM; Kearley, GJ;

Molecular Modelling of Ground- and Excited-States Vibrations in Organic Conducting Devices: Hexakis(n-hexyloxy)triphenylene (HAT6) as Case Study

Abstract

In order to gain insight into fundamental aspects of organic photocell materials, we have calculated ground and excited electronic-state structures and molecular vibrations for an isolated HAT6 molecule (hexakis(n-hexyloxy)triphenylene). Excited-state calculations are carried out using time-dependent density functional theory and frequencies are evaluated analytically using coupled perturbed Kohn–Sham equations. These model calculations have been validated against new infrared and ultraviolet data on HAT6 in solution. The main allowed valence excitation, having the largest oscillator strength, is chosen for the structural and vibrational investigations. Comparison with the ground-state vibrational dynamics reveals surprisingly large spectral differences. In addition, the alkoxy tails, which are usually considered to play only a structural role, are clearly involved in the molecular vibrations and the structural distortion of the excited electronic state compared with the ground state. The tails may play a more important role in charge separation, transport and excited-state relaxation than was previously thought. In this case, chemical modification of the tails would allow vibrational and related properties of organic photocell materials to be tailored.

Country
Australia
Keywords

Excited States, 541, Ground States, Organic Matter, Conductor Devices, Vibrational States, Molecular Models

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Average
Average
Average