Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sustainable Energy G...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Sustainable Energy Grids and Networks
Article . 2019 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2019
License: CC BY NC SA
Data sources: Datacite
http://dx.doi.org/10.1016/j.se...
Article
License: Elsevier TDM
Data sources: Sygma
versions View all 8 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Unsupervised algorithm for disaggregating low-sampling-rate electricity consumption of households

Authors: Holweger, Jordan; Dorokhova, Marina; Bloch, Lionel; Ballif, Christophe; Wyrsch, Nicolas;

Unsupervised algorithm for disaggregating low-sampling-rate electricity consumption of households

Abstract

Non-intrusive load monitoring (NILM) has been extensively researched over the last decade. The objective of NILM is to identify the power consumption of individual appliances and to detect when particular devices are on or off from measuring the power consumption of an entire house. This information allows households to receive customized advice on how to better manage their electrical consumption. In this paper, we present an alternative NILM method that breaks down the aggregated power signal into categories of appliances. The ultimate goal is to use this approach for demand-side management to estimate potential flexibility within the electricity consumption of households. Our method is implemented as an algorithm combining NILM and load profile simulation. This algorithm, based on a Markov model, allocates an activity chain to each inhabitant of the household, deduces from the whole-house power measurement and statistical data the appliance usage, generate the power profile accordingly and finally returns the share of energy consumed by each appliance category over time. To analyze its performance, the algorithm was benchmarked against several state-of-the-art NILM algorithms and tested on three public datasets. The proposed algorithm is unsupervised; hence it does not require any labeled data, which are expensive to acquire. Although better performance is shown for the supervised algorithms, our proposed unsupervised algorithm achieves a similar range of uncertainty while saving on the cost of acquiring labeled data. Additionally, our method requires lower computational power compared to most of the tested NILM algorithms. It was designed for low-sampling-rate power measurement (every 15 min), which corresponds to the frequency range of most common smart meters.

Country
Switzerland
Keywords

Residential energy use, Signal Processing (eess.SP), FOS: Computer and information sciences, Computer Science - Machine Learning, Unsupervised energy disaggregation, Markov model, Machine Learning (cs.LG), Non-intrusive load monitoring, FOS: Electrical engineering, electronic engineering, information engineering, Electrical Engineering and Systems Science - Signal Processing

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    30
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
30
Top 10%
Top 10%
Top 10%
Green
bronze