Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Soils and...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Soils and Sediments
Article . 2020 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Effects of freeze-thaw cycles on soil macropores and its implications on formation of hummocks in alpine meadows in the Qinghai Lake watershed, northeastern Qinghai-Tibet Plateau

Authors: Zong-Chao Li; Zhou Gao; Xiao-Yan Li; Xia Hu;

Effects of freeze-thaw cycles on soil macropores and its implications on formation of hummocks in alpine meadows in the Qinghai Lake watershed, northeastern Qinghai-Tibet Plateau

Abstract

The alpine regions are characterized by frequent freeze-thaw cycles, which influence the soil structure remarkably. However, the effects of freeze-thaw cycles on the soil macropore structure and its implications on the formation of hummocks are not well understood. This study aims to quantify the soil macropores of hummocks and the effects of freeze-thaw cycles on soil macropores to reveal its implications on the formation of hummocks in alpine meadows. A total of nine intact soil columns (0–50 cm deep) were excavated from the alpine meadows. Three replicates were collected from the hummocks and three were collected from the interhummocks, and they were scanned by X-ray computed tomography (CT). Another three replicates were excavated from the adjacent non-hummock alpine meadows, which were subjected to successive freeze-thaw cycles (0, 1, 3, and 6) and then scanned using X-ray CT. Soil macropore network of hummocks was more extensive and continuous than that of the interhummocks. The volumetric distribution of soil macropores in hummocks was multiple, while soil macropores of the interhummocks intensively fell in the volume range of 0–400 mm3. The soil macroporosity, macropore number density, surface area density, length density, node density, branch density, and mean macropore size of the hummocks were several times higher than those of the interhummocks. These soil macropore parameters showed a decrease after the first and third freeze-thaw cycle and later increased through the next three cycles. Soil macropores with volume > 1000 mm3 transformed into smaller ones (600–1000 mm3) during the freeze-thaw process. The soil macropore patterns of hummocks and interhummocks differed distinctly. Soil macropores responded significantly to freeze-thaw cycles. The effects of freeze-thaw cycles on the macropore number and size were more significant than on the morphology in alpine meadows. Hummock formation is closely related to the soil macropores during the freeze-thaw cycles, and the soil moisture played a crucial role in the hummock formation process.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    27
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
27
Top 10%
Average
Top 10%