Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 2016
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Practical linear-space Approximate Near Neighbors in high dimension

Authors: Avarikioti, Georgia; Emiris, Ioannis Z.; Psarros, Ioannis; Samaras, Georgios;

Practical linear-space Approximate Near Neighbors in high dimension

Abstract

The $c$-approximate Near Neighbor problem in high dimensional spaces has been mainly addressed by Locality Sensitive Hashing (LSH), which offers polynomial dependence on the dimension, query time sublinear in the size of the dataset, and subquadratic space requirement. For practical applications, linear space is typically imperative. Most previous work in the linear space regime focuses on the case that $c$ exceeds $1$ by a constant term. In a recently accepted paper, optimal bounds have been achieved for any $c>1$ \cite{ALRW17}. Towards practicality, we present a new and simple data structure using linear space and sublinear query time for any $c>1$ including $c\to 1^+$. Given an LSH family of functions for some metric space, we randomly project points to the Hamming cube of dimension $\log n$, where $n$ is the number of input points. The projected space contains strings which serve as keys for buckets containing the input points. The query algorithm simply projects the query point, then examines points which are assigned to the same or nearby vertices on the Hamming cube. We analyze in detail the query time for some standard LSH families. To illustrate our claim of practicality, we offer an open-source implementation in {\tt C++}, and report on several experiments in dimension up to 1000 and $n$ up to $10^6$. Our algorithm is one to two orders of magnitude faster than brute force search. Experiments confirm the sublinear dependence on $n$ and the linear dependence on the dimension. We have compared against state-of-the-art LSH-based library {\tt FALCONN}: our search is somewhat slower, but memory usage and preprocessing time are significantly smaller.

15 pages

Keywords

Computational Geometry (cs.CG), FOS: Computer and information sciences, Computer Science - Computational Geometry

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green