Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Renewable Energy
Article . 2017 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
https://dx.doi.org/10.24406/pu...
Other literature type . 2017
Data sources: Datacite
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Evaporator development for adsorption heat transformation devices – Influencing factors on non-stationary evaporation with tube-fin heat exchangers at sub-atmospheric pressure

Authors: Rahel Volmer; Gerrit Füldner; Lena Schnabel; Julia Eckert;

Evaporator development for adsorption heat transformation devices – Influencing factors on non-stationary evaporation with tube-fin heat exchangers at sub-atmospheric pressure

Abstract

Abstract Evaporators for adsorption heat pumps, chillers and storage devices mostly use water as refrigerant and work at sub-atmospheric pressures. However, there are hardly any applicable performance correlations or sizing guidelines for these rather unusual operating conditions. Within this study geometric and process-related impacts on non-stationary evaporation performance of copper tube-fin heat exchangers are investigated to start filling that gap. Cyclic condensation/evaporation measurements were performed in a thin film evaporation mode and in partially flooded operation with changing refrigerant filling level to cover different applications. For thin film evaporation a thermal resistance model was developed to quantify resistance contributions and identify performance-limiting factors. The presented measurement results reveal that evaporation performance in thin film operation is crucially governed by fluid side heat transfer (UA raise by 146% within tested Reynolds numbers) and wetting conditions while fin sheet thickness plays a marginal role (8% increase of UA). In partially flooded operation performance strongly depends on filling level. Apart from some refinement potential of the thin film model, the simulations reflect evaporation dynamics and effects of influencing factors fairly well which indicates that the employed model approach could be a suitable tool for an effective optimization of evaporator geometry and process parameters.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    25
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
25
Top 10%
Top 10%
Top 10%