Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Fast Antenna Design Using Multi-Objective Evolutionary Algorithms and Artificial Neural Networks

Authors: Yingjuan Li; Wenwen Qin; Shan Wang; Jian Dong; Meng Wang;

Fast Antenna Design Using Multi-Objective Evolutionary Algorithms and Artificial Neural Networks

Abstract

Aiming at reducing the large computation cost of traditional EM-driven antenna design methods, surrogate models based on back propagation neural networks (BPNN) are studied. In order to solve the problem of easily falling into local optimum in BPNN, a PSO-BPNN surrogate model is developed by improving initial structural parameters of neural networks and applied to fast multi-objective optimization design of multi-parameter antenna structures. Design results show that the proposed PSO-BPNN surrogate model can be integrating into multi-objective evolutionary algorithms for dealing with complex antenna designs with high-dimensional parameter space.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average