
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Photoluminescence Study of the Photoinduced Phase Separation in Mixed-Halide Hybrid Perovskite CH3NH3Pb(BrxI1−x)3 Crystals Synthesized via a Solvothermal Method

Photoluminescence Study of the Photoinduced Phase Separation in Mixed-Halide Hybrid Perovskite CH3NH3Pb(BrxI1−x)3 Crystals Synthesized via a Solvothermal Method
AbstractWe systematically synthesized mixed-halide hybrid perovskite CH3NH3Pb(BrxI1−x)3 (0 ≤ x ≤ 1) crystals in the full composition range by a solvothermal method. The as-synthesized crystals retained cuboid shapes, and the crystalline structure transitioned from the tetragonal phase to the cubic phase with an increasing Br-ion content. The photoluminescence (PL) of CH3NH3Pb(BrxI1−x)3 crystals exhibited a continuous variation from red (768 nm) to green (549 nm) with increasing the volume ratio of HBr (VHBr%), corresponding to a variation in the bandgap from 1.61 eV to 2.26 eV. Moreover, the bandgap of the crystals changed nonlinearly as a quadratic function of x with a bowing parameter of 0.53 eV. Notably, the CH3NH3Pb(BrxI1−x)3 (0.4 ≤ x ≤ 0.6) crystals exhibited obvious phase separation by prolonged illumination. The cause for the phase separation was attributed to the formation of small clusters enriched in lower-band-gap, iodide-rich and higher-band-gap, bromide-rich domains, which induced localized strain to promote halide phase separation. We also clarified the relationship between the PL features and the band structures of the crystals.
- Nanjing University of Posts and Telecommunications China (People's Republic of)
- Nanjing University of Posts and Telecommunications China (People's Republic of)
- Nanjing University China (People's Republic of)
- Nanjing University China (People's Republic of)
Article
Article
2 Research products, page 1 of 1
- 2017IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).24 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
