Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Archivio Istituziona...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energy Procedia
Article . 2018 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energy Procedia
Article
License: CC BY NC ND
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Open Access Repository
Article . 2018
License: CC BY NC ND
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

CFD analysis of the energy conversion process in a fixed oscillating water column (OWC) device with a Wells turbine

Authors: Filianoti, Pasquale G. F.; Gurnari, Luana; Torresi, Marco; Camporeale, Sergio M.;

CFD analysis of the energy conversion process in a fixed oscillating water column (OWC) device with a Wells turbine

Abstract

Abstract Oscillating Water Column (OWC) devices, both the fixed structures and the floating ones, are an important class of Wave Energy Converter (WEC) devices. In this work, we carried out a numerical investigation aiming to give a deep insight into the fluid dynamic interaction between waves and a U-shaped OWC breakwater, focusing on the energy conversion process. The U-OWC breakwater under consideration, represents the full-scale plant installed in the Civitavecchia (near Rome) harbour. The adopted numerical method is based on the solution of the unsteady Reynolds Averaged Navier-Stokes equations (URANS). The water-air interaction is taken into account by means of the Volume Of Fluid (VOF) model. A two-dimensional domain has been adopted to investigate the unsteady flow outside and inside the OWC device. In order to simulate the action of an air turbine of the Wells type, the air chamber has been connected to the atmosphere by means of a porous medium able to reproduce its linear relationship between pressure drop and flow rate of the air turbine. Several simulations have been carried out considering periodic waves of different amplitudes in order to analyze the performance of the plant and, in particular to analyze the resonance with incoming waves, when the U-OWC is expected to absorb more energy. In order to characterize the plant efficiency, we split the energy conversion process into three main steps, 1) the primary conversion from wave energy to hydraulic energy the water discharge flowing inside the U-duct; 2) the secondary conversion from the OWC inlet to the oscillating pneumatic power made available to the turbine and, finally, 3) the turbine mechanical power output. To this purpose, the simulations of three different cases, varying wave period and height, have been carried out to quantify the energy captured by the plant and the fluid dynamic losses both in the water and in the air.

Country
Italy
Keywords

European Geothermal Research and Innovation Search Engine, General Earth and Planetary Sciences, Energy Research, CDF; eigen period; Oscillating Water Column; performance; resonance condition; Volume of Fluid, General Environmental Science

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    9
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
9
Top 10%
Average
Average
Green
gold