
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Conductive-probe atomic force microscopy and Kelvin-probe force microscopy characterization of OH-terminated diamond (111) surfaces with step-terrace structures

Conductive-probe atomic force microscopy and Kelvin-probe force microscopy characterization of OH-terminated diamond (111) surfaces with step-terrace structures
Abstract We characterized OH-terminated diamond (111) surfaces which show step-terrace (ST) and bunching-step (BS) regions from contact potential difference (CPD) and current to investigate the relationships between surface topography and generation of interface states on the surfaces. The OH-termination was performed using water vapor annealing. The CPD and current measurements were conducted by conductive-probe AFM and Kelvin-probe force microscopy. The CPD and current were highly correlated with the surface topography. The I–V characteristics shows typical ideality factors (n) of about 1.5 and 2.0 in the ST region and the BS region, respectively. As the n were higher than that of an ideal Schottky contact (n = 1.0), we concluded that a metal insulator semiconductor diode structure, whose n increases as its interface state density increases, was formed. Considering that step density in the BS region was much higher than that in the ST region, the steps seemed to have generated the interface states.
3 Research products, page 1 of 1
- 2020IsAmongTopNSimilarDocuments
- 2017IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).7 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
