Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ DESY Publication Dat...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Gammapy: A Python package for gamma-ray astronomy

Authors: Donath, Axel; Terrier, Régis; Remy, Quentin; Sinha, Atreyee; Nigro, Cosimo; Pintore, Fabio; Khélifi, Bruno; +39 Authors

Gammapy: A Python package for gamma-ray astronomy

Abstract

In this article, we present Gammapy, an open-source Python package for the analysis of astronomical $\gamma$-ray data, and illustrate the functionalities of its first long-term-support release, version 1.0. Built on the modern Python scientific ecosystem, Gammapy provides a uniform platform for reducing and modeling data from different $\gamma$-ray instruments for many analysis scenarios. Gammapy complies with several well-established data conventions in high-energy astrophysics, providing serialized data products that are interoperable with other software packages. Starting from event lists and instrument response functions, Gammapy provides functionalities to reduce these data by binning them in energy and sky coordinates. Several techniques for background estimation are implemented in the package to handle the residual hadronic background affecting $\gamma$-ray instruments. After the data are binned, the flux and morphology of one or more $\gamma$-ray sources can be estimated using Poisson maximum likelihood fitting and assuming a variety of spectral, temporal, and spatial models. Estimation of flux points, likelihood profiles, and light curves is also supported. After describing the structure of the package, we show, using publicly available $\gamma$-ray data, the capabilities of Gammapy in multiple traditional and novel $\gamma$-ray analysis scenarios, such as spectral and spectro-morphological modeling and estimations of a spectral energy distribution and a light curve. Its flexibility and power are displayed in a final multi-instrument example, where datasets from different instruments, at different stages of data reduction, are simultaneously fitted with an astrophysical flux model.

Astronomy and astrophysics 678, A157 (2023). doi:10.1051/0004-6361/202346488

Published by EDP Sciences, Les Ulis

Country
Germany
Keywords

background, hadronic, variability, Poisson, programming, 520, flux, background: hadronic, gamma ray, spectral, gamma ray: flux, structure, numerical calculations, info:eu-repo/classification/ddc/520, spectral energy distribution

1 Data sources, page 1 of 1
  • more_vert
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
Related to Research communities
Energy Research