Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Bioresource Technolo...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Bioresource Technology
Article . 2013 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Effects of organic loading rate and effluent recirculation on the performance of two-stage anaerobic digestion of vegetable waste

Authors: Renjie Dong; Shubiao Wu; Wanqin Zhang; Zhuang Zuo;

Effects of organic loading rate and effluent recirculation on the performance of two-stage anaerobic digestion of vegetable waste

Abstract

The effects of organic loading rates (OLR) and effluent recirculation on dynamics of acidogenic and methanogenic processes in two-stage anaerobic digestion of vegetable waste were investigated. Two systems were performed at OLRs of 1.3, 1.7, 2.1 and 2.6 g VS/L/d. One system recirculated the effluent from the methanogenic reactor to acidogenic reactor. With increasing OLRs, total volatile fatty acid (VFA) concentration increased to approximately 8500 mg/L in acidogenic digester, where pH decreased from 6.4 to 5.2. Daily biogas production and methane content in methanogenic reactor increased from 1.2 to 4.4 L/d and from 27.4% to 60.5%, respectively. However, inhibition of hydrolysis in acidogenic reactor was demonstrated under the OLR of 2.6 g VS/L/d without recirculation, thus indicating system overloading. Effluent recirculation shown a considerable positive effect on alleviating VFA inhibition and improving biogas production in acidogenic reactor because of the effect of dilution and pH adjustment, particularly at high OLRs.

Related Organizations
Keywords

Biological Oxygen Demand Analysis, Hydrolysis, Fatty Acids, Carbohydrates, Hydrogen-Ion Concentration, Carbon, Refuse Disposal, Bioreactors, Biofilms, Biofuels, Vegetables, Food Industry, Anaerobiosis, Methane

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    95
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
95
Top 1%
Top 10%
Top 10%