Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Carbonarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Carbon
Article . 2014 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Highly efficient synthesis of graphene/MnO2 hybrids and their application for ultrafast oxidative decomposition of methylene blue

Authors: Jiangying Qu; Jiangying Qu; Shi Lin; Feng Gao; Feng Gao; Guanghua Shao; Beibei Li; +5 Authors

Highly efficient synthesis of graphene/MnO2 hybrids and their application for ultrafast oxidative decomposition of methylene blue

Abstract

Abstract A highly efficient method has been reported to fabricate the reduced graphene oxide/MnO2 (RGO/MnO2) hybrid materials, a kind of catalysts for oxidative decomposition of methylene blue (MB). The pristine suspension of graphene oxide/manganese sulfate (GO/MnSO4) produced by the modified Hummers method is in situ transformed into GO/MnO2 composites in combination with KMnO4, and then further into RGO/MnO2 composites by means of glucose-reduction. It is found that MnO2 nanoparticles with the size of 20–30 nm are uniformly distributed in the structure of RGO. A series of composites with different mass ratios of RGO to MnO2 has been proved superior catalytic activities, much higher than that of the bare MnO2 for decomposition of MB dye in the presence of H2O2. Typically, 50 mL of MB (50 mg L−1) can be completely decolorized and nearly 66% mineralized at 50 °C in 5 min with 10 mg of the RGO/MnO2 hybrid. According to the adsorption–oxidation–desorption mechanism, the high activity of RGO/MnO2 composites for decomposition of MB is closely related to the positive synergistic effect of RGO and MnO2 with the assistance of H2O2.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    204
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
204
Top 1%
Top 10%
Top 1%