Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao International Journa...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
International Journal of Electrical Power & Energy Systems
Article . 2019 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Improved method for aging assessment of winding hot-spot insulation of transformer based on the 2-FAL concentration in oil

Authors: Sun, Weidong; Yang, Lijun; Zare, Firuz; Lin, Yuandi; Cheng, Zhidong;

Improved method for aging assessment of winding hot-spot insulation of transformer based on the 2-FAL concentration in oil

Abstract

Abstract 2-furfuraldehyde (2-FAL) is widely accepted as a chemical marker to indicate the degradation of cellulose insulation in oil-impregnated transformers. However, the application of 2-FAL in the aging diagnosis of transformers in operation is ineffective. The excessive dispersion of 2-FAL concentration measured in transformers is caused by many influence factors. In addition, the 2-FAL concentration in oil cannot indicate the aging of the most serious point given the temperature distribution along the winding height, that is, the insulation at the hot spot of a winding. To optimize the assessment, an improved method for the hot-spot insulation assessment based on the 2-FAL concentration in oil is proposed in this work. The 2-FAL generation in cellulose chain scission is firstly analyzed theoretically, and a new linear relationship between ( 1 / D P t - 1 / D P 0 ) and 2-FAL total generation is obtained. Moreover, the 2-FAL partitioning between an insulation paper and mineral oil influenced by temperature, moisture, and aging status in total is considered. Second, by considering the linear relationship and the 2-FAL partitioning, an equation between the insulation at hot-spot temperature and the 2-FAL concentration in oil is established for the thermal aging under unequal temperature distribution condition. Finally, to verify the proposed method, a testing platform is introduced to conduct the thermal aging experiment with temperature gradients. The proposed method demonstrates better assessment results than the conventional thermal aging test at constant temperature.

Country
Australia
Related Organizations
Keywords

2-FAL total generation, 2208 Electrical and Electronic Engineering, 621, Insulation paper, 2102 Energy Engineering and Power Technology, 620, Thermal aging assessment, Unequal temperature distribution, Hot spot

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    25
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
25
Top 10%
Top 10%
Top 10%
gold