
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Self-Consistent Charge Density-Functional Tight-Binding Parametrization for Pt–Ru Alloys

pmid: 28267337
Self-Consistent Charge Density-Functional Tight-Binding Parametrization for Pt–Ru Alloys
We present a self-consistent charge density-functional tight-binding (SCC-DFTB) parametrization for PtRu alloys, which is developed by employing a training set of alloy cluster energies and forces obtained from Kohn-Sham density-functional theory (DFT) calculations. Extensive simulations of a testing set of PtRu alloy nanoclusters show that this SCC-DFTB scheme is capable of capturing cluster formation energies with high accuracy relative to DFT calculations. The new SCC-DFTB parametrization is employed within a genetic algorithm to search for global minima of PtRu clusters in the range of 13-81 atoms and the emergence of Ru-core/Pt-shell structures at intermediate alloy compositions, consistent with known results, is systematically demonstrated. Our new SCC-DFTB parametrization enables computationally inexpensive and accurate modeling of Pt-Ru clusters that are among the best-performing catalysts in numerous energy applications.
- University of Massachusetts System United States
- University of Jyväskylä Finland
- University of Massachusetts System United States
- University of Jyväskylä Finland
- University of Massachusetts Amherst United States
platina, ta114, tiheysfunktionaaliteoria, alloys, nanohiukkaset, nanoparticles, metalliseokset, platinum, ta116, density functional theory
platina, ta114, tiheysfunktionaaliteoria, alloys, nanohiukkaset, nanoparticles, metalliseokset, platinum, ta116, density functional theory
4 Research products, page 1 of 1
- 2021IsAmongTopNSimilarDocuments
- 2020IsAmongTopNSimilarDocuments
- 2020IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).27 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
