
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Performance characteristics of single-stage biohythane production by immobilized anaerobic bacteria

Performance characteristics of single-stage biohythane production by immobilized anaerobic bacteria
Biohythane produced via dark fermentation is much greener than hythane that is generated using natural gas. Biohythane production using a single-stage system has potential to increase the economic viability since it requires fewer controls than a two-stage system that has individual acidogenic and methanogenic reactors. This single-stage system is an innovative method in producing biohythane. The present work investigated the performance of a mesophilic single-stage system with a batch mode operation to generate biohythane. The reactor was seeded with hydrogenic and methanogenic bacteria (HB and MB), which were entrapped in κ-carrageenan/ gelatin beads (2%/2% w/w) using the dripping method. The energy yield of 0.41 to 1.48 kJ g–1 glucose and the hydrogen content in biohythane (H2/(H2 + CH4)) of 0.35 to 0.69 were obtained. These results indicate that different biohythane compositions would be obtained by regulating the HB/MB bacteria concentration ratio, substrate concentration and cultivation pH. Moreover, a comparison of two-stages and single-stage systems as well as the challenges were also elucidated.
- Nha Trang University Viet Nam
- Feng Chia University Taiwan
- Feng Chia University Taiwan
- Nha Trang University Viet Nam
1 Research products, page 1 of 1
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).3 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
