
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Hydrogen passivation of poly-Si/SiOx contacts for Si solar cells using Al2O3 studied with deuterium

doi: 10.1063/1.5031118
Hydrogen passivation of poly-Si/SiOx contacts for Si solar cells using Al2O3 studied with deuterium
The interplay between hydrogenation and passivation of poly-Si/SiOx contacts to n-type Si wafers is studied using atomic layer deposited Al2O3 and anneals in forming gas and nitrogen. The poly-Si/SiOx stacks are prepared by thermal oxidation followed by thermal crystallization of a-Si:H films deposited by plasma-enhanced chemical vapor deposition. Implied open-circuit voltages as high as 710 mV are achieved for p-type poly-Si/SiOx contacts to n-type Si after hydrogenation. Correlating minority carrier lifetime data and secondary ion mass spectrometry profiles reveals that the main benefit of Al2O3 is derived from its role as a hydrogen source for chemically passivating defects at SiOx; Al2O3 layers are found to hydrogenate poly-Si/SiOx much better than a forming gas anneal. By labelling Al2O3 and the subsequent anneal with different hydrogen isotopes, it is found that Al2O3 exchanges most of its hydrogen with the ambient upon annealing at 400 °C for 1 h even though there is no significant net change in its total hydrogen content.
- Eindhoven University of Technology Netherlands
- Technical University Eindhoven Netherlands
- National Renewable Energy Laboratory United States
- Technical University Eindhoven TU Eindhoven Research Portal Netherlands
- National Renewable Energy Laboratory United States
Physics and Astronomy (miscellaneous)
Physics and Astronomy (miscellaneous)
11 Research products, page 1 of 2
- 2018IsAmongTopNSimilarDocuments
- 2019IsAmongTopNSimilarDocuments
- 2020IsAmongTopNSimilarDocuments
- 2017IsAmongTopNSimilarDocuments
- 2020IsAmongTopNSimilarDocuments
- 2022IsAmongTopNSimilarDocuments
chevron_left - 1
- 2
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).89 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
