
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Coordinative Low-Voltage-Ride-Through Control for the Wind-Photovoltaic Hybrid Generation System

handle: 10397/88221
Coordinative Low-Voltage-Ride-Through Control for the Wind-Photovoltaic Hybrid Generation System
The wind-photovoltaic (PV) hybrid renewable energy system (HRES), which consists of permanent-magnet synchronous generators (PMSG) and PV arrays, is becoming a cost-effective electric source for powering islanded areas. However, high penetration of renewables makes the power system vulnerable to transient voltage faults, which undermines the stability of the future inverter-dominated grid. To address this issue, a coordinative low-voltage-ride-through (LVRT) control scheme is proposed for the operation of the wind-PV HRES in this article. This control scheme will exploit the maximum energy inertia of the HRES for incorporating the power imbalance between the faulted grid and the renewable generators. An optimization problem is formulated to maximize the renewable energy harvesting within the operational and environmental limitations. To cope with different working conditions, four control processes are coordinated in an optimized manner during the LVRT period: 1) adaptive dc-link voltage control; 2) PMSG rotating speed control; 3) PV energy curtailment control; and 4) blade pitch angle control. Besides, this control scheme applies a direct output control that can generate stable and accurate current as per grid code requirements. The results of the hardware-in-the-loop (HIL) experiment and the MATLAB/Simulink simulation are provided to verify the effectiveness of the proposed control scheme.
- Hong Kong Polytechnic University (香港理工大學) Hong Kong
- Hong Kong Polytechnic University (香港理工大學) China (People's Republic of)
- Hong Kong Polytechnic University (香港理工大學) Hong Kong
- Hong Kong Polytechnic University China (People's Republic of)
- Hong Kong Polytechnic University (香港理工大學) China (People's Republic of)
Low-voltage-ride-Through (LVRT), Power system faults, Smart grid, Hybrid renewable energy system (HRES), 004
Low-voltage-ride-Through (LVRT), Power system faults, Smart grid, Hybrid renewable energy system (HRES), 004
6 Research products, page 1 of 1
- 2019IsAmongTopNSimilarDocuments
- 2022IsAmongTopNSimilarDocuments
- 2016IsAmongTopNSimilarDocuments
- 2018IsAmongTopNSimilarDocuments
- 2020IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).36 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
