Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Journal of Emer...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Journal of Emerging and Selected Topics in Power Electronics
Article . 2020 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Coordinative Low-Voltage-Ride-Through Control for the Wind-Photovoltaic Hybrid Generation System

Authors: Yufei He; Minghao Wang; Zhao Xu;

Coordinative Low-Voltage-Ride-Through Control for the Wind-Photovoltaic Hybrid Generation System

Abstract

The wind-photovoltaic (PV) hybrid renewable energy system (HRES), which consists of permanent-magnet synchronous generators (PMSG) and PV arrays, is becoming a cost-effective electric source for powering islanded areas. However, high penetration of renewables makes the power system vulnerable to transient voltage faults, which undermines the stability of the future inverter-dominated grid. To address this issue, a coordinative low-voltage-ride-through (LVRT) control scheme is proposed for the operation of the wind-PV HRES in this article. This control scheme will exploit the maximum energy inertia of the HRES for incorporating the power imbalance between the faulted grid and the renewable generators. An optimization problem is formulated to maximize the renewable energy harvesting within the operational and environmental limitations. To cope with different working conditions, four control processes are coordinated in an optimized manner during the LVRT period: 1) adaptive dc-link voltage control; 2) PMSG rotating speed control; 3) PV energy curtailment control; and 4) blade pitch angle control. Besides, this control scheme applies a direct output control that can generate stable and accurate current as per grid code requirements. The results of the hardware-in-the-loop (HIL) experiment and the MATLAB/Simulink simulation are provided to verify the effectiveness of the proposed control scheme.

Countries
Hong Kong, China (People's Republic of), China (People's Republic of)
Keywords

Low-voltage-ride-Through (LVRT), Power system faults, Smart grid, Hybrid renewable energy system (HRES), 004

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    36
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
36
Top 1%
Top 10%
Top 10%