
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Impact of divertor geometry on radiative divertor performance in JET H-mode plasmas

handle: 11588/876089
Impact of divertor geometry on radiative divertor performance in JET H-mode plasmas
Radiative divertor operation in JET high confinement mode plasmas with the ITER-like wall has been experimentally investigated and simulated with EDGE2D-EIRENE in horizontal and vertical low field side (LFS) divertor configurations. The simulations show that the LFS divertor heat fluxes are reduced with N2-injection in similar fashion in both configurations, qualitatively consistent with experimental observations. The simulations show no substantial difference between the two configurations in the reduction of the peak LFS heat flux as a function of divertor radiation, nitrogen concentration, or pedestal Zeff. Consistently, experiments show similar divertor radiation and nitrogen injection levels for similar LFS peak heat flux reduction in both configurations. Nevertheless, the LFS strike point is predicted to detach at 20% lower separatrix density in the vertical than in the horizontal configuration. However, since the peak LFS heat flux in partial detachment in the vertical configurations is shifted towards the far scrape-off layer (SOL), the simulations predict no benefit in the reduction of LFS peak heat flux for a given upstream density in the vertical configuration relative to a horizontal one. A factor of 2 reduction of deuterium ionization source inside the separatrix is observed in the simulations when changing to the vertical configuration. The simulations capture the experimentally observed particle and heat flux reduction at the LFS divertor plate in both configurations, when adjusting the impurity injection rate to reproduce the measured divertor radiation. However, the divertor D α-emissions are underestimated by a factor of 2-5, indicating a short-fall in radiation by the fuel species. In the vertical configuration, detachment is experimentally measured and predicted to start next to the strike point, extending towards the far SOL with increasing degree of detachment. In contrast, in the horizontal configuration, the entire divertor particle flux profile is reduced uniformly with increasing degree of detachment.
- Max Planck Institute of Neurobiology Germany
- University Federico II of Naples Italy
- Max Planck Society Germany
- Helmholtz Association of German Research Centres Germany
- Instituto Superior de Espinho Portugal
radiation, geometry, EDGE2D-EIRENE, JET, detachment, divertor, SDG 7 - Affordable and Clean Energy, impurity seeding
radiation, geometry, EDGE2D-EIRENE, JET, detachment, divertor, SDG 7 - Affordable and Clean Energy, impurity seeding
11 Research products, page 1 of 2
- 2020IsAmongTopNSimilarDocuments
- 2019IsAmongTopNSimilarDocuments
- 2019IsAmongTopNSimilarDocuments
- 2018IsAmongTopNSimilarDocuments
- 2011IsAmongTopNSimilarDocuments
- 2021IsAmongTopNSimilarDocuments
- 2017IsAmongTopNSimilarDocuments
chevron_left - 1
- 2
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).30 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
