Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IRIS Cnrarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Electrocatalysis
Article . 2021 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
CNR ExploRA
Article . 2021
Data sources: CNR ExploRA
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Performance of Pd@FeCo Catalyst in Anion Exchange Membrane Alcohol Fuel Cells

Authors: Rapela R. Maphanga; Francesco Vizza; Patrick V. Mwonga; Hamish A. Miller; Kenneth I. Ozoemena; Kenneth I. Ozoemena; Omobosede O. Fashedemi;

Performance of Pd@FeCo Catalyst in Anion Exchange Membrane Alcohol Fuel Cells

Abstract

The performances of the core-shell nano-electrocatalysts (FeCo@Fe@Pd/CNT-OH and their monometallic Pd counterparts (Pd/CNT-OH) on carbon nanotubes in passive and active direct methanol fuel cells (DMFCs) and direct ethanol fuel cells (DEFCs) have been studied. The direct alcohol alkaline fuel cell (DAAFCs) performances of the two nanocatalysts studied revealed the outstanding performances of the core shell, FeCo@Fe@Pd catalysts over the single Pd metal on the same substrates. A fourfold increase in power density value was observed in the DEFC while a threefold increase was seen in the DMFC while operating both passive DAAFCs at moderate temperatures using the core shell nanocatalysts. The core-shell-modified electrode also gave an exceptional activity of over 50% columbic efficiency in comparison with its Pd counterpart in the passive DEFC. Density functional theory calculations carried out to further comprehend the electrocatalytic oxidation of the nanocatalysts towards both methanol and ethanol fuels corroborated the experimental findings. An increase in the readily available electrons of the partially filled d-orbitals was found to be involved in the catalytic reactions on the surface of the FeCo@Fe@Pd/CNT-OH core shell catalysts as opposed to those of the p-orbitals of Pd/CNT-OH, thus enhancing its catalytic activities in both DAAFCs.

Country
Italy
Keywords

Palladium-based core-shell nano-electrocatalysts; Direct methanol fuel cell (DMFC); Direct ethanol fuel cells (DEFC); Coulombic (Faradaic) efficiency; DFT calculations

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    10
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
10
Top 10%
Average
Top 10%
Related to Research communities