Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ University of Califo...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Environmental Science & Technology
Article . 2018 . Peer-reviewed
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Fugitive Emissions and Health Implications of Plancha-Type Stoves

Authors: Víctor M. Ruiz-García; Rufus D. Edwards; Masoud Ghasemian; Víctor M. Berrueta; Marko Princevac; Juan C. Vázquez; Michael Johnson; +1 Authors

Fugitive Emissions and Health Implications of Plancha-Type Stoves

Abstract

Plancha-type stoves have been widely disseminated in Mexico and Central America, but the contribution of fugitive emissions from these stoves to indoor air concentrations has been poorly quantified. In this study, fugitive emissions were measured for four plancha-type cookstoves most disseminated in Mexico (Patsari, ONIL, Ecostufa, and Mera-Mera). In controlled testing, fugitive emissions from plancha-type chimney stoves ( n = 15 for each stove) were on average 5 ± 3% for PM2.5 and 1 ± 1% for CO, much lower than defaults in WHO Guidelines (25 ± 10%). Using a Monte Carlo single zone model with locally measured parameters, average kitchen concentrations resulting from fugitive emissions were 15 ± 9 μg/m3 for PM2.5 and 0.06 ± 0.04 mg/m3 for CO. On the basis of these models, plancha-type stoves meet benchmarks for WHO Air Quality Guidelines (AQG) Interim Target I for PM2.5 and the 24 h AQG for CO, respectively, with on average 97% of homes meeting the guideline for PM2.5. Similarly, all four plancha-type stoves were ISO IWA Tier 4 for indoor emissions of CO and Tier 3 for indoor emissions of PM2.5. Three-dimensional computational fluid dynamics (CFD) analysis was used to estimate neighborhood pollution impacts of upstream chimney emissions. When chimney emissions were included as background concentrations combined with indoor contributions from fugitive emissions, plancha-type stoves would still meet the WHO AQG Annual Interim Target I for PM2.5 and the 24 h AQG for CO for the scenario modeled in this study.

Country
United States
Keywords

571, Central America, Climate Action, Air Pollution, Air Pollution, Indoor, Particulate Matter, Indoor, Cooking, Household Articles, Mexico, Environmental Sciences

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    40
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
40
Top 1%
Top 10%
Top 10%
Green
bronze