Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ International Journa...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Inhibition effects of antibiotics ampicillin and gentamycin on the methanogenic activity of anaerobic biomass

Authors: Saffari Khouzani Hajar; Heidari Mahnaz; Nabavi Bibi Fatemeh; Amin Mohammad Mehdi;

Inhibition effects of antibiotics ampicillin and gentamycin on the methanogenic activity of anaerobic biomass

Abstract

Aims: Inhibition behavior of two types of antibiotics including Ampicillin and Gentamicin on specific methanogenic activity of anaerobic biomass has been investigated. Materials and Methods: A total of 18 Specific Methanogenic Activity (SMA) tests were conducted in 120-ml vials containing 40 v/v% substrate, 37 v/v% biomass and 23 v/v% biogas in batch mode for 20-25 days. Produced methane was measured by gas replacement with 2N KOH solution as CO 2 absorbent. Three volatile fatty acids (VFAs) including acetic acid, propionic acid, and butyric acid were used as co-substrate. Results: In the tests with 200, 500 and 1000 mg/l of ampicillin at presence of acetic acid, the cumulative SMA were 66, 101, and 154 ml CH 4 /g VSS.d, those of with propionic acid were 25, 35, and 46 ml CH 4 /g VSS.d, and with butyric acid the values of 198,140, and 245 ml CH 4 /g VSS.d were obtained respectively. In the experiments with 100, 500 and 1000 mg/l of gentamicin the cumulative SMA were 141, 204, and 257 ml CH 4 /g VSS.d for acetic acid as a substrate, 54, 72 and 71 ml CH 4 /g VSS.d for propionic acid, and 139, 74, and 85.5 ml CH 4 /g VSS.d for butyric acid, respectively. Conclusion: At the same concentrations, ampicillin showed more inhibitory effect than gentamicin on anaerobic decomposition of biomass. Within the used VFAs, the inhibitory effects of propionic acid was greater than acetic acid and butyric acid.

Related Organizations
Keywords

Environmental sciences, specific methanogenic activity, antibiotic, volatile fatty acids, Environmental engineering, Ampicillin, GE1-350, gentamicin, TA170-171, Environmental technology. Sanitary engineering, TD1-1066

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
gold