Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Inter-reference gap distribution replacement

an improved replacement algorithm for set-associative caches
Authors: Kei Hiraki; Masamichi Takagi;

Inter-reference gap distribution replacement

Abstract

We propose a novel replacement algorithm, called Inter-Reference Gap Distribution Replacement (IGDR), for set-associative secondary caches of processors. IGDR attaches a weight to each memory-block, and on a replacement request it selects the memory-block with the smallest weight for eviction. The time difference between successive references of a memory-block is called its Inter-Reference Gap (IRG). IGDR estimates the ideal weight of a memory-block by using the reciprocal of its IRG.To estimate this reciprocal, it is assumed that each memory-block has its own probability distribution of IRGs; from which IGDR calculates the expected value of the reciprocal of the IRG to use as the weight of the memory-block. For implementation, IGDR does not have the probability distribution; instead it records the IRG distribution statistics at run-time. IGDR classifies memory-blocks and records statistics for each class. It is shown that the IRG distributions of memory-blocks correlate their reference counts, this enables classifying memory-blocks by their reference counts. IGDR is evaluated through an execution-driven simulation. For ten of the SPEC CPU2000 programs, IGDR achieves up to 46.1% (on average 19.8%) miss reduction and up to 48.9% (on average 12.9%) speedup, over the LRU algorithm.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    25
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
25
Top 10%
Top 10%
Average