Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ International Journa...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Optical and Electrical Properties of Copper Doped Cadmium Oxy-Sulphide Quaternary Thin Films by MOCVD Technique

Authors: B. Olofinjana; Oladepo Fasakin; Moses Sesan Eluyemi; Adetokunbo Temitope Famojuro; M. A. Eleruja; A.V. Adedeji; Sabur Abiodun Ayinde; +1 Authors

Optical and Electrical Properties of Copper Doped Cadmium Oxy-Sulphide Quaternary Thin Films by MOCVD Technique

Abstract

A prepared single solid source precursor was used for the deposition of copper doped oxy-sulphide thin films on glass substrate by MOCVD technique. This was achieved by the pyrolysis of the prepared precursors at 420°C with a flow rate of 2.5 dm3/min for 2 hours. The deposited films were characterized using Rutherford Backscattering Spectroscopy (RBS), Scanning Electron Microscopy (SEM), UV-visible spectrophotometry and four point probe method. RBS analysis showed that the expected elements are present while the thickness was estimated to be 889 nm. The SEM images of the deposited film showed a fine structure with densely packed grains of uniform grain size of about 80 nm, well distributed throughout the entire substrate which is polycrystalline in nature. The film revealed an average transmittance of 80% in the visible region with a direct bandgap of 2.41 eV. The absorbance of the film was observed to be low in the visible and near-infrared regions, and high in UV region. The values of 1 and were obtained as the sheet resistance and resistivity of the film respectively. The deposited quaternary thin film is found to be a promising candidate as window layer and absorber layer for cost effective photovoltaics.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold
Related to Research communities