
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Correlation for countercurrent flow limitation in a PWR hot leg

Correlation for countercurrent flow limitation in a PWR hot leg
Numerical simulations were done to evaluate countercurrent flow limitation (CCFL) characteristics in a pressurized water reactor (PWR) hot leg with the diameter of 750 mm by using a volume of fluid (VOF) method implemented in the CFD software, FLUENT6.3.26. The calculated CCFL characteristics agreed well with known values including the UPTF data at 1.5 MPa. Sensitivity analyses for system pressures up to 8 MPa showed that the calculated CCFL characteristics in the Wallis diagram were slightly mitigated from 0.1 MPa to 1.5 MPa with increasing system pressure, but they did not change from 1.5 MPa to 8MPa. Using the CCFLs calculated in this study and values measured under air–water and steam–water conditions, a CCFL correlation and its uncertainty were derived.
- Helmholtz Association of German Research Centres Germany
- Kobe University Japan
- Kobe University Japan
- Helmholtz-Zentrum Dresden-Rossendorf Germany
1 Research products, page 1 of 1
- 2012IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).44 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
