Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Computational Intell...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Computational Intelligence and Neuroscience
Article . 2021 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

An Internet of Things‐Oriented Adaptive Mutation PSO‐BPNN Algorithm to Assist the Construction of Entrepreneurship Evaluation Models for College Students

Authors: Huaxiang Fu;

An Internet of Things‐Oriented Adaptive Mutation PSO‐BPNN Algorithm to Assist the Construction of Entrepreneurship Evaluation Models for College Students

Abstract

In this paper, the IoT‐based adaptive mutation PSO‐BPNN algorithm is used to conduct in‐depth research and analysis of the entrepreneurship evaluation model for college students and practical applications. This paper details the principle, implementation, and characteristics of each BP algorithm and PSO algorithm. When classifying college students’ entrepreneurship evaluation based on BP neural network, because BP algorithm is a local optimization‐seeking algorithm, it is easy to fall into local minima in the training phase of the network and the convergence speed is slow, which leads to the reduction of classifier recognition rate. To address the above problems, this paper proposes the algorithm of PSO optimized BP neural network (PSO‐BPNN) and establishes a classification and recognition model based on this algorithm for college students’ entrepreneurship evaluation. The predicted values obtained from the particle swarm optimization neural network model are used to calculate the gray intervals, and the modeling samples are further screened using the gray intervals and the correlation principle, while the hyperspectral particle swarm optimization neural network model of soil organic matter based on the gray intervals is established afterward; and the estimation results are compared and analyzed with those of traditional modeling methods. The results showed that the coefficient of determination of the gray interval‐based particle swarm optimization neural network model was 0.8826, and the average relative error was 3.572%, while the coefficient of determination of the particle swarm optimization neural network model was 0.853, and the average relative error was 4.34%; the average relative errors of the BP neural network model, support vector machine model, and multiple linear regression model were 8.79%, 6.717%, and 9.9%, respectively. The average relative errors of the BP neural network model, support vector machine model, and multiple linear regression model are 8.79%, 6.717%, and 9.468%, respectively. In general, the entrepreneurial ability of college students is at a good level (83.42 points), among which the entrepreneurial management ability score (84.30 points) and entrepreneurial spirit (84.16 points) are basically the same, while the entrepreneurial technology ability is relatively low (82.76 points), and the evaluation results are further verified by the double case analysis method. The current problems encountered by university students in entrepreneurship are mainly the lack of practicality, which indicates that universities, industries, and national strategy implementation levels are not sufficiently focused and collaborative in entrepreneurship development to varying degrees.

Related Organizations
Keywords

Internet of Things, Entrepreneurship, Humans, Students, Algorithms

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
Green
gold