Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Bioresource Technolo...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Bioresource Technology
Article . 2022 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Aquaculture waste nutrients removal using microalgae with floating permeable nutrient uptake system (FPNUS)

Authors: Muhammad Mubashar; Yufeng Qin; Shouchun Li; Xuezhi Zhang; Xifan Nie;

Aquaculture waste nutrients removal using microalgae with floating permeable nutrient uptake system (FPNUS)

Abstract

Large area requirements and huge energy consumption restrict the applications of microalgae in wastewater treatment. In this study, in-situ nutrient removal was tested using a floating permeable nutrients uptake system with pore sizes of 1, 5, 10, and 40 µm, and Chlorella sorokiniana and Scenedesmus acuminatus. Results showed that N transfer rate across FPNUS varied with membrane pore size and N-type. Average transfer rate of NH4+-N, NO3--N, and NO2--N across 1 µm membrane was 2.6, 14.6, and 2.3 mg m-2h-1, respectively, sufficient to support microalgal growth. The NH4+-N and NO3--N removal rate in shrimp wastewater reached 1.32 and 1.88 mg L-1d-1, comparable to some BNR processes used in RAS. According to the developed area ratio prediction model, FPNUS to pond area ratio of 21% is sufficient to balance N loading of 0.05 mg L-1d-1. These results indicate extraordinary potential of in-situ nutrient removal from wastewaters using FPNUS.

Related Organizations
Keywords

Nitrogen, Phosphorus, Aquaculture, Chlorella, Nutrients, Wastewater, Microalgae, Biomass

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    11
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
11
Top 10%
Average
Top 10%