
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Towards a more complete quantification of the global carbon cycle

Towards a more complete quantification of the global carbon cycle
Abstract. The main components of global carbon budget calculations are the emissions from burning fossil fuels, cement production, and net land-use change, partly balanced by ocean CO2 uptake and CO2 increase in the atmosphere. The remaining difference between these terms is referred to as the residual sink, assumed to correspond to increasing carbon storage in the terrestrial biosphere (ΔB). It is often used to constrain carbon exchange in global earth-system models. More broadly, it guides expectations of autonomous changes in global carbon stocks in response to climatic changes, including increasing CO2, that may add to, or subtract from, anthropogenic CO2 emissions. However, a budget with only these terms omits some important additional fluxes that are important for correctly inferring ΔB. They are cement carbonation and fluxes into increasing pools of plastic, bitumen, harvested-wood products, and landfill deposition after disposal of these products, and carbon fluxes to the oceans via wind erosion and non-CO2 fluxes of the intermediate break-down products of methane and other volatile organic compounds. While the global budget includes river transport of dissolved inorganic carbon it omits river transport of dissolved and particulate organic carbon, and the deposition of carbon in inland water bodies. Each one of these terms is relatively small, but together they can constitute important additional fluxes that would significantly reduce the size of the inferred ΔB. We estimate here that inclusion of these fluxes would reduce ΔB from the currently reported 3.6 down to only about 2.1 GtC yr−1 (excluding losses from land-use change). The implicit reduction in the size of ΔB has important implications for the inferred magnitude of current-day biospheric net carbon uptake and the consequent potential of future biospheric feedbacks to amplify or negate net anthropogenic CO2 emissions.
- New South Wales Department of Primary Industries Australia
- National Institute of Water and Atmospheric Research New Zealand
- Government of New South Wales Australia
- Landcare Research New Zealand
- New South Wales Department of Primary Industries Australia
QE1-996.5, Ecology, Geology, Life, QH501-531, QH540-549.5
QE1-996.5, Ecology, Geology, Life, QH501-531, QH540-549.5
3 Research products, page 1 of 1
- 2020IsAmongTopNSimilarDocuments
- 2019IsAmongTopNSimilarDocuments
- 2018IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).29 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
