Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Fuelarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Fuel
Article . 2002 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Change of nitrogen functionality of 15N-enriched condensation products during pyrolysis

Authors: Yoshikazu Sugimoto; Zhiheng Wu; Hiroyuki Kawashima;

Change of nitrogen functionality of 15N-enriched condensation products during pyrolysis

Abstract

Changes in the nitrogen functionality of 15 N-enriched condensation products prepared from glucose and 15 N-glycine were investigated during pyrolysis at 600-1000 °C. The structural changes in the condensation products were studied by means of solid-state 13 C and 15 N NMR spectroscopies. During pyrolysis, the aliphatic moieties of the condensation products decomposed and evolved as gas and tar. At pyrolysis temperatures above 600 °C, almost all the carbon in the chars were converted to aromatic carbon. After pyrolysis, large amounts of nitrogen remained in the chars as char nitrogen (char-N), and about 30% of the nitrogen was eliminated from the chars as HCN and NH 3 . With increasing temperature, the production of HCN and NH 3 increased and the amount of char-N decreased. By combining X-ray photoelectron spectroscopy and NMR results, detailed results for nitrogen fractions in chars were obtained. During pyrolysis, the fraction of unsubstituted pyrrole-N decreased and the fraction of quaternary-N increased. The fraction of pyridine-N remained almost constant at temperatures below 800 °C, but at 900 °C and above, the fraction of pyridine-N decreased. The fraction of substituted pyrrole-N showed minimum at 800 °C. On the basis of these results, structural changes of nitrogen functional groups during pyrolysis are discussed.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    12
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
12
Top 10%
Average
Average