
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Application and reactivation of magnetic nanoparticles in Microcystis aeruginosa harvesting

pmid: 25935387
Application and reactivation of magnetic nanoparticles in Microcystis aeruginosa harvesting
This study developed a magnetic nanoparticles (MNPs) harvesting and reactivation technique for rapid cyanobacteria Microcystis aeruginosa separation. The harvesting of raw MNPs achieved high efficiency of 99.6% with the MNPs dosage of 0.58g MNPs/g dry-biomass, but gradually decreased to 59.1% when directly reused 5 times. With extra ultrasonic chloroform:methanol solvent treatment, the MNPs can be effectively reactivated for M. aeruginosa harvesting with 60% efficiency after 5 times reactivation and the separation efficiency kept above 93% with 0.20g MNPs/g dry-biomass dosage. The cyanobacteria-MNPs complex can be effectively disrupted by ultrasonic chloroform:methanol solvent treatment and the zeta potential was recovered for MNPs electrostatic attraction. The MNPs adsorption followed the Langmuir isotherm, and the maximum adsorption capacity and Langmuir constant was 3.74g dry-biomass/g and 311.64L/g respectively. This MNPs reactivation technique can achieve low energy separation and reduce MNPs consumption by 67%, providing potential engineering implementation for cyanobacterial biomass harvesting.
- Guangdong Ocean University China (People's Republic of)
- Shanghai University China (People's Republic of)
- Beijing Normal University China (People's Republic of)
- Chinese Academy of Sciences China (People's Republic of)
- Chinese Academy of Sciences China (People's Republic of)
Microcystis, 610, Fractional Precipitation, Cell Separation, 620, Sonication, Magnetic Fields, Batch Cell Culture Techniques, Magnetite Nanoparticles
Microcystis, 610, Fractional Precipitation, Cell Separation, 620, Sonication, Magnetic Fields, Batch Cell Culture Techniques, Magnetite Nanoparticles
4 Research products, page 1 of 1
- 2012IsAmongTopNSimilarDocuments
- 2018IsAmongTopNSimilarDocuments
- 2018IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).61 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
