
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Analysis of Planar-Cavity Receiver Reactor for Solar Thermochemical Dry-Reforming
Analysis of Planar-Cavity Receiver Reactor for Solar Thermochemical Dry-Reforming
Abstract Concentrating solar thermal (CST) systems can be leveraged to provide not only heat for power generation, but also for energy storage and thermochemical fuel production. Such solar thermochemical processes have been studied conceptually, from solar thermochemical hydrogen production (STCH) and thermochemical energy storage (TCES), to gasification, reforming, and fuel upgrading by various means. The solar receiver and reactor are critical components in the conversion of solar energy into chemical energy in the form of “solar fuels’. For effective conversion of solar energy within a coupled solar receiver-reactor, extremely high temperatures are required, thereby demanding a high solar concentration ratio (CR) for efficient operation. This creates a design challenge for the receiver-reactor, as many thermochemical processes involve gas or gas-solid systems that are limited by low heat transfer coefficients. A unique receiver design is proposed that has the potential to incorporate various high-temperature thermochemical processes such as TCES-assisted power generation, methane reforming, or STCH processes. Modeling this receiver and its potential applications requires a full three-dimensional model that accurately captures the interconnected effects of receiver geometry, spatial solar irradiance, complex radiation, reaction kinetics, fluid dynamics, and heat transfer. In this paper we analyze a CST system integrated with this unique planar-cavity receiver-reactor design using the developed model. The model presented in this paper showed where improved thermal management was needed to achieve suitable receiver performance when a dry-methane reforming process is implemented.
- National Renewable Energy Laboratory United States
- National Renewable Energy Laboratory United States
15 Research products, page 1 of 2
- 2020IsAmongTopNSimilarDocuments
- 2009IsAmongTopNSimilarDocuments
- 2007IsAmongTopNSimilarDocuments
- 2020IsAmongTopNSimilarDocuments
- 2016IsAmongTopNSimilarDocuments
- 2008IsAmongTopNSimilarDocuments
chevron_left - 1
- 2
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).0 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
